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Abstract. In this paper, we develop a personalized video relighting al-
gorithm that produces high-quality and temporally consistent relit videos
under any pose, expression, and lighting condition in real-time. Existing
relighting algorithms typically rely either on publicly available synthetic
data, which yields poor relighting results, or on actual light stage data
which is difficult to acquire. We show that by just capturing recordings
of a user watching YouTube videos on a monitor we can train a person-
alized algorithm capable of performing high-quality relighting under any
condition. Our key contribution is a novel image-based neural relighting
architecture that effectively separates the intrinsic appearance features -
the geometry and reflectance of the face - from the source lighting and
then combines them with the target lighting to generate a relit image.
This neural architecture enables smoothing of intrinsic appearance fea-
tures leading to temporally stable video relighting. Both qualitative and
quantitative evaluations show that our architecture improves portrait
image relighting quality and temporal consistency over state-of-the-art
approaches on both casually captured ‘Light Stage at Your Desk’ (LSYD)
and light-stage-captured ‘One Light At a Time’ (OLAT) datasets. Source
code is available at https://github.com/chedgekorea/relighting
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1 Introduction

With the recent rise in popularity of video conferencing for business, educational,
and personal activities, there is a significant demand for improving facial lighting.
Virtually relighting our images and videos helps us improve the appearance of
our faces without requiring explicit studio-quality lighting in a dedicated space
or any specialized lighting expertise. Recent advances in deep neural networks
have renewed interest in the problem of virtual relighting.

Training a deep neural network for relighting requires extensive training data
that includes source images paired with relit target images. One way of acquiring
this data is by using a large spherical rig with numerous lights and cameras,
known as a light stage [5]. While light stage data has been shown to produce high-
quality relighting results [36,44,23,38,22,48], the limited availability of datasets,
trained models, and access to the light stage itself has impeded further research.
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Fig. 1. We learn a personalized relighting algorithm that generates temporally con-
sistent and high-quality portrait videos under different lighting. We train the network
using recordings of users watching YouTube on a monitor, thereby creating a Light
Stage at Your Desk (LSYD). We project a portion of the LDR environment map with
a 180 ◦ FoV as the monitor light, while a portion of the remaining 90 ◦ FoV is mapped
as the background. We can achieve a harmonization effect with the virtual background.

For example, One Light At a Time (Dynamic-OLAT) [44] is the only publicly
available light stage relighting dataset consisting of four individuals only. As a
result, researchers have often turned to synthetic data to train their relighting
algorithms [31,49,13,35]. Unfortunately, existing synthetic data compromises the
quality of relit images.

We draw inspiration from recent work by Sengupta et al . [30,26] and de-
velop a personalized relighting model by capturing a single user’s appearance
while being lit by a computer monitor. However, the results and applications of
Sengupta et al . [30] have several limitations. First, it requires capturing users
with fixed poses and expressions, an unrealistic requirement for actual users that
impedes casual capture. Second, the relighting algorithm requires a dark room
with negligible ambient light, limiting the environment in which this can be
applied. Third, the resulting relit video is temporally unstable, exhibiting signif-
icant flickering artifacts, making it unsuitable for relighting Zoom calls. Lastly,
it requires knowledge of source lighting and thus is unable to relight arbitrary
portrait images captured in the wild.

In this paper, we show that casually captured light stage data is sufficient
to develop a high-quality temporally consistent video portrait relighting algo-
rithm that works under arbitrary conditions (i.e. pose, expression, and ambient
lighting) in real-time (∼45 fps). To that end, we create our own casually cap-
tured light stage dataset with varying pose, expression, and lighting, called Light
Stage at Your Desk (LSYD). Our key contribution is a neural image-based re-
lighting architecture, based on the commonly used U-Net [36,49,22,40,38], that
better disentangles the source lighting from the user’s intrinsic facial appearance
(shape and reflectance) and then adds back the target lighting to generate a re-
lit image. Existing image-based relighting architectures [36,30] fail to accurately
separate source lighting information from intrinsic appearance features in the en-
coder, leading to inconsistent and temporally unstable video relighting. To this
end, we introduce the light-conditioned feature normalization (LCFN) module,
which performs relighting and also predicts the source lighting from an input
image. The LCFN module also enables temporal stability by performing expo-
nential smoothing of de-lit intrinsic appearance features and facilitates relighting
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Fig. 2. We highlight the key structural differences between our relighting architecture
and that of [36,30]. Our approach removes source lighting information from input
image features and only propagates intrinsic appearance (geometry and reflectance)
features from the encoder to decoder, which results in better relighting quality and
more temporal stability. In contrast [36,30] propagates entire image features from the
encoder to the decoder without ‘de-light’, and expects the decoder to remove source
lighting and add target lighting information.

of any arbitrary portrait image with unknown source lighting. We also improve
the data pre-processing pipeline from Sengupta et al . [30] to make the relighting
algorithm more robust to pose, expression, and ambient lighting conditions.

We compare our relighting network with two other algorithms: Sun et al .
[36], which was originally trained on light stage data (OLAT), and Sengupta et
al . [30], which was originally trained on casually captured data (albeit with fixed
pose, expression, and no ambient lighting). For a fair comparison, we train all
algorithms for personalized relighting using the same data pre-processing steps
and loss functions on 5 individuals from our LSYD dataset and 4 individuals
from OLAT [44]. Our network outperforms Sun et al . [36] and Sengupta et al .
[30] by 22.3% and 23.6% respectively on the LSYD dataset and by 23.5% and
25.6% on the OLAT dataset, in terms of LPIPS. Qualitatively our method pro-
duces superior relighting in terms of color and quality. We further show that our
approach is more temporally consistent, leading to less flickering than Sun et
al . [36] or Sengupta et al . [30]. Detailed ablation studies show that LCFN and
source monitor prediction improves relighting quality, feature, and source moni-
tor smoothing improves temporal consistency, and data pre-processing improves
robustness to pose and expression.

To summarize, our main contributions are as follows:

• We show that casually captured Light Stage at Your Desk (LSYD) data
can be used to build a high-quality temporally consistent personalized video
relighting algorithm without requiring access to an expensive light stage setup.

• We introduce a novel video relighting architecture that separates the source
lighting from the user’s intrinsic appearance features and then adds back the tar-
get lighting, leading to improved relighting and temporal consistency for videos.

• While our relighting network focuses on ‘at home’ Light Stage (LSYD
dataset) outperforming state-of-the-art algorithms, we also perform equally well
on actual Light Stage captured OLAT [44] datasets, and any arbitrary portrait
image captured ‘in the wild’.
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2 Related Work

Portrait relighting methods change the appearance of the face to match a tar-
get lighting condition. This can be expressed through lighting parameters (e.g.,
an environment map, spherical harmonics, directional lighting, etc.) or through
a reference image of another person. Our approach relights a portrait image
to a lighting condition expressed through a low dynamic range (LDR) image
representing the image on the monitor.
Image based relighting. Before the rise of deep learning, attempts were made
at non deep learning image based relighting [34,24,33]. Shu et al . [34] introduced
a face relighting approach that uses a mass-transport formulation for the transfer
of illumination between images. Peers et al . [24] demonstrated a method for re-
lighting portrait images with flat lighting to match specific target environments,
incorporating a reference subject database for approximation. Shih et al . [33]
adopted a multiscale technique to transfer local image statistics from reference
portraits onto new ones, facilitating the matching of attributes like local contrast
and overall lighting direction. Recent advancements in deep learning have caused
significant shifts to the landscape of portrait relighting [25,11,20]. Research on
ratio images for relighting [49,13] was conducted, utilizing public datasets and
employing methods based on ratio images. However, this is limited to synthetic
data, resulting in a significant domain gap with real data. The widespread appli-
cation of light stages [5] in gathering data has enabled numerous groundbreaking
research endeavors[36,44,38,28]. However, these methods rely on capturing data
with a light stage, which are expensive and inaccessible. Instead, our approach
builds a personalized relighting algorithm using casually captured videos from
the desk recording setup introduced in Sengupta et al . [30]. In contrast to Sen-
gupta et al . [30], we can collect data during daily computer usage by minimizing
numerous constraints, eliminating the need for specific efforts in data collection.
Relighting with explicit decomposition. Creating a virtual relighting dataset
through the utilization of synthetic human models to train their networks has
been carried out in some studies [31,18,42]. However, when using synthetic data
to train a neural network, the large domain gap between synthetic and real data
impacts the model’s performance on real data. In contrast, others [12,4,27,2,37]
generate relit images by using public datasets and employ methods based on
3D model rendering. Specifically, Hou et al . [12] takes a more advanced ap-
proach by introducing explicit components, where rays originating from the
face intersect with other parts of the facial geometry to create relit images.
Moreover, the extensive use of light stages [5] has enabled numerous innova-
tive studies [22,40,23,10,43,7,21,47,38,41,19] in this domain. Some researchers
have incorporated explicit elements such as albedo, normals, specular maps, and
diffuse maps into their methodologies [22,40,23,7]. Others have taken a physics-
based rendering approach [10,43] to resolve these issues. Other papers[21,47] aim
to manipulate lighting conditions and generate images under different lighting
scenarios using texture information. However, explicit decomposition methods
require ground truth (GT) data for these intrinsic components to train, either
from synthetic data or real light stage data. Obtaining GT data for ‘at-home’
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captures is impossible, thus we focus on image-based relighting. In contrast, re-
cent studies aim to streamline the capture process, using a mobile phone camera
[32] or a sun stage [39] instead of a light stage. Nevertheless, due to their reliance
on per-scene optimization, both of these papers lack the capability for real-time
relighting and to generalize to unseen appearances of the individual and are only
limited to the particular capture. Instead, our approach performs image-based
relighting enabling real-time temporally consistent video relighting, at ∼45 fps.

3 Method

Our setup is similar to Gerstner et al . [9] and Sengupta et al . [30], where a user’s
face is captured while illuminated by their monitor. By capturing multiple videos
of the user’s face along with the video on their monitor, we build our ‘at home’
light stage dataset. We then use these data to train a personalized portrait
relighting algorithm that can render the user’s face under arbitrary lighting
conditions. Specifically, given a portrait image Isrc, corresponding source monitor
lighting Lsrc, and target monitor lighting Ltrg, our aim is to learn a function G
that relights Isrc under Ltrg:

Îtrg, L̂src = G(Isrc, Lsrc, Ltrg; θG). (1)

Note that our formulation can be used for scenarios where the source lighting is
unknown by simply replacing the input source lighting with the predicted source
lighting, unlike previous approaches [30].

In the following sections, we outline our methodology for portrait video re-
lighting using a monitor as a light stage. Sec. 3.1 outlines strategies for con-
structing training data pairs from casually captured videos that allow flexibility
in facial expression, pose, and ambient lighting. In Sec. 3.2, we introduce our
relighting network architecture that disentangles lighting from intrinsic appear-
ance using light-conditioned feature normalization, leading to high-quality relit
images. In Sec. 3.3, we propose additional techniques which enforce temporal
consistency and eliminate flickering, also using LCFN. Finally, in Sec. 3.4, we
discuss how to train our relighting network.

3.1 Constructing training data pairs

While past work [30] imposed requirements of a neutral pose, expression, and
dark room, we loosen these constraints to allow subjects in any conditions. The
only constraint we maintain is that the room lighting shall not overpower the
light emitted from the monitor. For example, if the capture occurs in front of
a window with bright sunlight, the light from the monitor will have minimal
impact on the face. As in Sengupta et al . [30], we aim to generate source and
monitor image pairs (Isrc, Lsrc), as well as target image and target monitor pairs
(Itrg, Ltrg), such that we can train our network to produce Îtrg where Itrg is
the pseudo ground truth. However, due to unrestricted subject movement dur-
ing data collection, there is a lack of pixel-aligned data, making random pairs
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Fig. 3. We first de-light the input image features extracted by the U-Net encoder using
Adaptive Instance Normalization (AdaIN) guided by the lighting features extracted
from the source lighting with a Light Encoder. We then pass these light-normalized
encoder features to the decoder of the U-Net and apply another set of AdaIN guided by
the features extracted from the target lighting with the Light Encoder. We additionally
predict source lighting from the U-Net encoder using a Light Decoder.

unsuitable. Previous work [30] utilized segmentation for pairing. However, we
observed that segmentation is ineffective at finding pairs of images with the
same pose and expression. Thus, we instead use facial keypoint detection [16] to
obtain source and target image pairs.

3.2 Relighting network architecture

Our network architecture, as illustrated in Fig. 3, is built upon the well-established
U-Net [29]. This architecture is comprised of an encoder and a decoder with skip
connections, which are commonly used in existing portrait relighting algorithms
[36,30,49,13,38]. Our U-Net’s encoder, similar to Sengupta et al . [30] and Sun
et al . [36], processes the source portrait Isrc by applying multiple convolutional
layers of varying strides (1 or 2). This process progressively reduces spatial res-
olution while increasing the number of channels, yielding a latent feature space.
The decoder performs the inverse function of the encoder by upsampling from the
latent features and simultaneously skip-connecting to intermediate features from
the encoder. These skip connections transport high-frequency shape and appear-
ance information from the encoder to the decoder, ultimately resulting in the
generation of a realistic relit image. However, they also carry source illumination
features from the encoder to the decoder, leading to subpar relighting quality
and temporal flickering. To address this issue, we introduce light-conditioned fea-
ture normalization (LCFN) for the skip-connected features to better disentangle
lighting features from intrinsic appearance features.

To disentangle lighting and intrinsic appearance components from the en-
coded features – i.e. to de-light – we first predict the source lighting from the
encoder features. In contrast to Sun et al . [36], which predicts the illumination
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L̂src corresponding to the source image Isrc using the final encoded features, we
take a different approach. We extract features at intermediate steps within the
encoder, downsample them, and concatenate them using a confidence learning
approach [14] to predict the illumination L̂src.

The LCFN module uses the lighting features generated by the lighting en-
coder to perform Adaptive Instance Normalization (AdaIN) [17] on the encoder
features. We begin by using a multi-layer perceptron (MLP) to encode lighting
features, transforming the lighting information of Lsrc and Ltrg into a com-
pact, low-dimensional representation (d = 256). We apply AdaIN to encoder
features using the source lighting features, producing normalized features f l

(for l = 1, . . . , 7). Through this normalization process, we induce de-lighting,
effectively removing the lighting information present in the encoder features.
Starting from the de-lit latent features f7, we perform progressive bi-linear up-
sampling. At each upsampling step, we apply AdaIN to the concatenated feature,
incorporating the target lighting features encoded by the lighting encoder. This
construction using the LCFN module and source lighting prediction allows us
to effectively remove source lighting features from the input and only propagate
intrinsic appearance features from the encoder to the decoder. We then add tar-
get lighting features in the decoder. The LCFN module also contributes towards
temporal consistency (see Sec. 3.3). See Fig. 2 for a comparison between our
architecture and those of Sun et al . [36] and Sengupta et al . [30].

3.3 Enforcing temporal consistency

Temporal consistency is vital in making relit videos stable, realistic, and aes-
thetically pleasing. Previous single-image portrait relighting techniques [30,36]
do not incorporate explicit temporal modeling, leading to undesirable flickering
artifacts when applied to videos. Accuracy in single-image portrait relighting
can often be uncorrelated to temporal flickering. Inconsistencies across frames
are even more noticeable when the source lighting Lsrc changes continuously.

When applied to skip-connected features, LCFN provides a natural defense
against temporal flickering by removing source lighting features from the input
image. However, it cannot ensure temporal consistency on its own. We notice two
further problems: (1) when the source lighting gradually changes, LCFN often
leaks small amounts of source lighting information to the decoder, leading to
flickering; (2) when source lighting changes abruptly, undesirable fading effects
can be observed.

To address this issue, we propose a skip-connected feature smoothing tech-
nique that assumes neighboring frames share the same intrinsic appearance fea-
tures, obtained after de-lighting input image features with LCFN. We apply a
simple exponential smoothing of de-lit features generated by LCFN, denoted as
f l, using all the previous frames:

f l
t := α · f l

t + (1− α) · f l
t−1 (for l = 1, . . . , 7) (2)

with α = 0.7. Note that exponential smoothing does not work without de-lit
LCFN features, which removes time-varying source lighting.
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We further notice that when the monitor light changes abruptly the relighting
effect is delayed by a few frames, mainly due to the limited refresh rate of the
monitor and frame rate of the camera. We thus propose doing a weighted average
of source monitor lighting Lsrc from a sequence of previous and current frames
to achieve smoother and more natural results:

Lt
src avg =

∑N−1
i=0 βiLt−i

src∑N−1
i=0 βi

, (3)

where β = 0.6 and N = 3.

3.4 Training relighting network

Our model is trained through minimizing a weighted combination of three loss
functions: generator loss, discriminator loss, and monitor loss. The first loss aims
to minimize the discrepancies between the true target image Itrg in our dataset

and the predicted target relit image Îtrg, leading to accurately relit images.
We adopted our generator loss (Eq. 4) and our discriminator loss (Eq. 5) from
Sengupta et al . [30]:

LI
G = λL1LL1(Itrg, Îtrg) + λPLP (Itrg, Îtrg)

+ λCLC(Isrc, Î
C
src) + λD(D(Îtrg; θD)− 1)2,

(4)

LD = (D(Itrg; θD)− 1)2 + (D(Îtrg; θD))2, (5)

where LL1 denotes L1 loss, LP denotes perceptual loss [45], LC denotes cycle
consistency loss [50], andD is the discriminator [15]. ÎCsrc and L̂C

trg are the outputs

from G(Îtrg, Ltrg, Lsrc, ; θG)
The monitor reconstruction loss focuses on minimizing the errors between

the predicted source light L̂src and the true source light Lsrc and is expected to
enforce improved disentanglement of lighting information from intrinsic appear-
ance features.

LM
G = λL1LL1(Lsrc, L̂src) + λPLP (Lsrc, L̂src) + λCLC(Ltrg, L̂

trg
C ). (6)

Finally, we minimize the image generator loss LI
G, the discriminator loss LD,

and the illumination loss LM
G together:

min
G,D

LI
G + LD + λM

G LM
G . (7)

4 Experiments

In Sec. 4.1, we first discuss our data collection process, which was based on the
approach used to compile the Light Stage at Your Desk (LSYD) dataset. In Sec.
4.2, we perform quantitative and qualitative comparisons with existing single-
image portrait relighting algorithms and evaluate their temporal consistency. In
Sec. 4.3, we demonstrate predicting, at a low-level, what the user is looking at on
the monitor screen. Finally, in Sec. 4.4, we perform ablation studies, evaluating
the network architecture’s impact on relighting performance.
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Fig. 4. We perform a qualitative comparison with existing techniques [30,36] on the
LSYD dataset. Source and target (images & lighting) were unseen during training. All
models are personalized, i.e. trained on images of that individual only. We (Col. 3)
produce significantly better results compared to existing approaches (Cols 4 and 5).

4.1 Data

We recorded data from 5 users of diverse ethnicities and genders to ensure a
wide range of skin types. Each participant wore a variety of outfits, and we used
4 different ambient lighting conditions per person to mimic the conditions of
real-life online meetings. We directed the participants to continuously change
their facial expression and pose during the capture sessions. Each user’s face
was captured while watching 8 different videos, each 8 minutes long, on different
days with varying appearances. We randomly hold out 1 video for testing and
use the remaining 7 videos for training. We use this testing sequence only for
qualitative evaluation, not for any quantitative metrics. This is because quanti-
tative evaluation requires a pair of source and target images of the same person
in the same pose but under different lighting conditions. This is difficult to ob-
tain accurately for the aforementioned test video sequence since the participants
naturally vary their pose and expression over the course of the video. Instead,
we capture an additional test sequence, used only for numerical evaluation in
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Fig. 5. We perform a qualitative comparison on the OLAT dataset [44]. Our approach
outperforms [36,30] and can render strong directional lighting and specular highlights
without any explicit modeling of geometry and reflectance.

which the participant is captured in 9 different pose-expression combinations,
each with a distinct monitor light. For each pose, we can create

(
9
2

)
= 36 source

and target pairs as input and pseudo ground-truth, resulting in a total of 324 test
data pairs per user. Additionally, we compared methods using Dynamic OLAT
Dataset [44] with environment lighting maps [1,8]. During this comparison, we
converted HDR environment maps to LDR and utilized a 270◦ FoV as a monitor
light to assess the relighting results. We want to note that all the test data is
composed of unseen portraits and lightings for both LSYD and OLAT datasets.

4.2 Comparison with existing approaches

We employ three error metrics to assess relighting performance: RMSE, LPIPS
[45], and DISTS [6]. LPIPS and DISTS are more robust to slight differences in
pose between the relit image and the pseudo ground truth and detect perceptual
differences more effectively than RMSE.
Portrait image relighting. We compared our approach with existing portrait
relighting neural architectures — Sun et al . [36] and Sengupta et al . [30] —
by training on our captured LSYD dataset using the same pre-processing for
all three architectures (see Sec. 3.1). Our training loss, given in Sec. 3.4, can
handle misalignment in source-target pairs in training data, similar to the loss
proposed in Sengupta et al . [30] (we use an additional loss on source monitor
lighting prediction). For Sun et al . [36], we train both with their original loss



Personalized Video Relighting With an At-Home Light Stage 11

Table 1. We train a personalized relighting model on 5 users from our LSYD dataset
and 4 users from the OLAT dataset [44]. We evaluate these models using source &
target portrait images, as well as lighting, that were not encountered during the training
phase, and report average RMSE, LPIPS [46], and DISTS[6] scores both on LSYD and
OLAT dataset. Our method can perform relighting without source lighting Lsrc, by
simply using the predicted light source from our model as input lighting. Our method
significantly outperforms Sun et al . [36] and Sengupta et al . [30].

Known source lighting LSYD data OLAT data [44]

Lsrc LPIPS ↓ DISTS ↓ RMSE ↓ LPIPS ↓ DISTS ↓ RMSE ↓

Sun et al . [36] w/ LSun – 0.1712 0.1629 8.5958 0.2273 0.1745 6.2692
Sun et al . [36] w/ LOurs – 0.1029 0.1152 8.4476 0.2267 0.1569 6.1898
Ours – 0.0839 0.0953 8.3222 0.1812 0.1336 6.0931
Sengupta et al . [30] ✓ 0.1018 0.1105 8.2826 0.2237 0.1675 6.1751
Ours ✓ 0.0832 0.0953 8.1939 0.1809 0.1334 5.9548

function LSun (which expects perfect source-target pose alignment obtained in
OLAT data) and with our proposed loss function Lours to specifically handle
misalignment in LSYD data. We train personalized models on 5 users from
the LSYD dataset and on 4 users from the publicly available Dynamic OLAT
Dataset [44] with 2361 indoor environment lighting maps [1,8].

Fig. 6. Our method can also relight portrait im-
ages captured with unknown light sources. We
relight a source image (Col. 1) with target light
shown in the inset in Col. 2. We add a reference
of how the face appears under that target light.

For our quantitative evalua-
tion, we test our model on 1620
test images across 5 users with
unseen appearance and light-
ing conditions on the LSYD
dataset and on 7172 test im-
ages from the Dynamic OLAT
dataset. We present the result
in Tab. 1. We observe that our
proposed approach outperforms
Sengupta et al . [30] and Sun et
al . [36] by 22.3% and 23.6% re-
spectively on the LSYD dataset
and by 23.5% and 25.6% on the
OLAT dataset, when compar-
ing LPIPS score. Our qualita-
tive comparison, as presented in
Fig. 4 and Fig. 5, shows that
our model performs superior re-
lighting in terms of color, quality, and consistency, and can render strong direc-
tional lighting and specular highlights without any explicit modeling.

Note that Sun et al . [36] does not require the source lighting Lsrc during
test time. Our proposed approach can also perform relighting without prior
knowledge of source lighting Lsrc by simply predicting L̂src and using it for
light-conditioned feature normalization. We show that even in the absence of
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Lsrc, our method outperforms Sun et al . [36] by 22.6% on the LSYD data and
by 25.5% on the OLAT data, in terms of LPIPS.

In Fig. 6, we demonstrate that our approach can relight any portrait image
captured ‘in-the-wild’ without requiring the knowledge of source lighting, and
outperforms Sun et al . [36]. Our approach first predicts a proxy source monitor
lighting, imagining the portrait image to be captured under a monitor lighting,
and uses this predicted source lighting in the LCFN module to ‘de-lit’ the input
image and relight it with a target lighting.

Fig. 7. We relight the input image with direc-
tional lights (1st row) and without any target
light (‘Relight A’). We then subtract the ‘Re-
light A’ from directional images (row-2 col-2:5).
Our method learns to render the effects of direc-
tional lighting and decouple ambient and domi-
nant frontal lighting (from monitor).

In Fig. 7 1st-row, we show
the results of relighting an input
image with directional lights
by moving specific bright ar-
eas on the monitor screen. Our
method learns to render direc-
tional lighting effects and cast
shadows as needed. To better
illustrate the effect of moving
lighting, we first relight the in-
put image with no light re-
flected from the monitor (row-
2 col-1), which produces a re-
lit image under ambient room
lighting only. Subtracting this ‘de-lit’ image from the relit images under direc-
tional lighting (row-2 col 2-5) highlights the ability of our method to decouple
ambient room illumination from dominant frontal lighting. However, due to the
constraint that our lighting is limited to the illumination emitted from the mon-
itor, we may not accurately depict extreme lighting effects. To this end, we show
the strong directional light effects using the OLAT dataset in Fig. 5.

Table 2. We evaluate temporal consistency
by relighting a test video captured with vary-
ing source lighting with the same target light-
ing and calculating RMSE between adjacent
frames. We then report the average RMSE
across all adjacent frames and compute an error
rate to indicate the percent of adjacent frames
with RMSE higher than a threshold.

RMSE ↓ Error Rate (%)

Threshold >0.2 >0.3 >0.4

Sun et al. [36] 5.86 13.53 2.61 1.06

Sengupta et al. [30] 6.37 21.83 5.40 1.75
+Lsrc avg 5.76 13.31 2.34 0.98

Ours (base) 6.01 16.22 3.61 1.08
+Lsrc avg 5.73 13.09 2.31 0.83
+LCFN 5.68 13.04 2.28 0.71
+Lsrc avg+LCFN 5.55 12.89 2.22 0.65

Portrait video relighting.Next,
we evaluate the temporal consis-
tency of each portrait video re-
lighting algorithm. For each user in
the LSYD data, we relit the held-
out test video with 50 different tar-
get lighting conditions, creating 50
relit videos. We then computed the
RMSE between adjacent frames in
relit videos as a measure of tem-
poral consistency. Since the pose
is almost identical between adja-
cent frames, lower RMSE error in-
dicates temporally consistent re-
lighting. We then report the av-
erage temporal RMSE across all
such adjacent frames. In practice,



Personalized Video Relighting With an At-Home Light Stage 13

however, a significant fraction of adjacent frame pairs have extremely similar
lighting between the two frames, making their relit frames naturally consistent
anyway. Only in a small percentage of adjacent frames does the source lighting
significantly change, leading to obvious flickering in the relit video if temporal
consistency is not maintained. Thus, in addition to average temporal RMSE, we
also compute the error rate for three different thresholds: 0.2 (low), 0.3 (medium),
and 0.4 (high), which indicate the percentage of adjacent frames where RMSE
error is more than the threshold.

Fig. 8. We show temporal consistency between
adjacent frames separated by 0.33s by relighting
a test video captured with varying source lighting
with the same target lighting. Note that [36,30]
both exhibit abrupt changes in lighting between
frames t and t+ 10, while our approach produces
a more stable result.

In Tab. 2 and Fig. 8, we
compare our approach with
and without skip-connected fea-
ture smoothing to past works
[36,30]. Note that this tem-
poral smoothing of the skip-
connected features can only be
applied in our framework since
we de-light encoder features
from the source lighting with
LCFN. Both for our approach
and for Sengupta et al . [30],
we can further apply smooth-
ing of input source lighting to
handle abrupt changes. We ob-
serve that our method pro-
duces the most temporally con-
sistent relighting while also be-
ing the most accurate (see Tab.
1). We further note that both
skip-connected feature smooth-
ing and smoothing of source
lighting improve temporal con-
sistency.

4.3 Monitor prediction

Fig. 9. Monitor prediction comparison on LSYD
data (Col. 1 and 2) and “in the wild” setting (Col.
3 and 4). The second row represents the monitor
prediction by [36] and Ours.

Our network can also be used
to predict the source monitor
lighting of any input image, as
shown in Fig. 9. For the LSYD
dataset, we do have images of
the source monitor for every in-
put image, so we can calcu-
late monitor prediction accu-
racy numerically. We observe
that our method slightly out-
performs [36] with a Mean Absolute Error of 0.15 vs 0.17, also qualitatively
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producing more meaningful visualizations. For portrait images, we do not have
ground-truth source lighting, but visualizations show meaningful predictions.

The ability to predict monitor lighting from images captured by our monitor
has many implications. This technique can be used to detect deep fake avatars
during live video calls by purposefully projecting specific images via screen shar-
ing and observing if we can detect the same image from the webcam feed of other
attendees in the call. If there is a mismatch between the projected monitor image
and the predicted one, this likely indicates a deep fake avatar in the video call.

4.4 Ablation studies

Table 3. Both LCFN and source monitor pre-
diction Lsrc improve relighting performance by
effectively disentangling source lighting infor-
mation from intrinsic appearance features.

Lsrc de-lighting RMSE ↓ LPIPS ↓ DISTS ↓

– – 8.4230 0.0964 0.1071
✓ – 8.2596 0.0915 0.1013
– ✓ 8.1907 0.0904 0.0966
✓ ✓ 8.0746 0.0853 0.0963

We report the removal of vari-
ous components from our relight-
ing network in Tab. 3, specifically
LCFN and source monitor light-
ing prediction using intermediate
encoder features. We observe that
both improve final relighting per-
formance, which shows their ef-
fectiveness in disentangling source
lighting information from intrinsic appearance features.

5 Conclusion

We propose a personalized video relighting algorithm that leverages casually
captured LSYD data to generate real-time high-quality temporally consistent
relit videos under any pose, expression, and lighting conditions. We present a
novel network architecture that can perform high-quality relighting on both the
LSYD and OLAT datasets, rendering challenging lighting conditions like direc-
tional lights, shadows, and specularities. We achieve this without using any 3D
information or performing explicit decomposition, simply by achieving better
image-based relighting enabled by our proposed neural architecture with LCFN
module. Our method enables better lighting quality during live video calls and in
portrait images, and produces better harmonization with virtual backgrounds.
Limitation. Since we utilize only the front-facing monitor light as the source
lighting, we do not account for scenarios where the light source is located on
the sides (90◦) or behind (180◦). However, it does not necessarily mean that our
model cannot learn directional lighting effects, as demonstrated by training on
the OLAT dataset which contains full 360◦ lighting, see Fig. 5.
Ethical considerations. While our primary goal is to allow people to improve
their facial appearance with virtual relighting, we note that it is also a form of
image manipulation and can be used for malicious purposes [3]. Furthermore,
we emphasize that while currently we can only predict the user’s direct line-of-
sight monitor lighting in low resolution, the potential for high-resolution monitor
prediction in the future could raise significant privacy concerns.



Personalized Video Relighting With an At-Home Light Stage 15

References
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